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We present direct numerical simulations of the spatial development of normal mode
perturbations to boundary layers with Falkner–Skan velocity profiles. Values of the
pressure gradient parameter considered range from very small, i.e. nearly flat-plate
conditions, to relatively large values corresponding to incipient separation. In almost
all cases, we find that the most effective perturbation is one composed of a plane
wave and a pair of oblique waves inclined at equal and opposite angles to the primary
flow direction. The frequency of the oblique waves is half that of the fundamental
plane wave and because the conditions for resonance are satisfied exactly, all modes
share a common critical layer, thus facilitating a strong interaction.

The oblique waves initially undergo a parametric type of subharmonic resonance,
but in accordance with recent analyses of non-equilibrium critical layers, the system
subsequently becomes fully coupled. From that point on, the amplification of all
modes, including the plane wave, substantially exceeds the predictions of linear
stability theory. Good agreement is obtained with the experimental small pressure
gradient results of Corke & Gruber (1996). Our growth rates are slightly larger owing
to slight differences in initial conditions (e.g. the angle of inclination of the oblique
waves).

The spectral element method was used to discretize the Navier–Stokes equations
and the preconditioned conjugate gradient method was used to solve the resulting
system of algebraic equations. At the inflow boundary, Orr–Sommerfeld modes were
employed to provide the initial forcing, whereas the buffer domain technique was
used at the outflow boundary to prevent convective wave reflection or upstream
propagation of spurious information.

1. Introduction
In many engineering applications, the transition of boundary layers to turbulence

occurs in a region of adverse pressure gradient. This is the case, for example, with air
flow over wings that are moderately swept. Transition on such wings is most likely
to take place in the adverse pressure gradient region past the maximum thickness
point. Given the practical importance of pressure gradient flows and the fact that
the basic instability mechanism is different from the Tollmien–Schlichting instabilities
that occur in a flat-plate boundary layer, it is most surprising that the literature is so
much more extensive for the Blasius case.

It is well known that shear flows with inflectional velocity profiles are linearly
unstable on an inviscid basis and the effects of viscosity are generally stabilizing.



270 C. Liu and S. A. Maslowe

The Blasius boundary layer profile, on the other hand, owing to the absence of a
vorticity maximum would be stable without viscosity. However, viscosity turns out to
be destabilizing in the Blasius case as a result of the very subtle Tollmien–Schlichting
mechanism. The growth rates associated with this mechanism are relatively small
compared, for example, with the inflection point instability in a mixing layer. The
contrast between these two flows serves, in fact, as a focal point in the chapter on
shear flow stability in the monograph edited by Swinney & Gollub (1985).

From a fundamental point of view, the preceding considerations make it clear
that the adverse pressure gradient boundary layer is a most interesting example for
detailed study because it combines features of the two situations discussed above.
When the pressure gradient is very small and the Reynolds number not too large,
the instability can arguably be regarded as a modification of the Blasius case. On the
other hand, for flows closer to separation and subject to stronger pressure gradients,
the instability is inviscid in character and it is not clear to what extent any knowledge
gained through the study of flat-plate boundary layers is applicable.

The foregoing discussion was centred on linear instability mechanisms, but similar
issues arise from consideration of certain finite-amplitude analyses that have appeared
recently. These include the closely related studies of Goldstein & Lee (1992), Wu (1992)
and Mallier & Maslowe (1994). Although only the first of these dealt specifically with
the adverse pressure gradient boundary layer, what turns out to be most important
is that each treated resonant interactions in a shear flow with an inflectional velocity
profile and utilized the same type of critical layer balance. The end result in each case
was a pair of coupled integro-differential equations describing the amplitude evolution
of the interacting disturbances. These equations exhibit explosive instabilities, i.e.
singularities that are reached in a finite time (or distance). Of course, the stability
literature abounds with such singular solutions and usually these merely indicate a
breakdown of the theory as the disturbance amplitudes become large. Hence, one
of the goals of the present research was to see if in a direct numerical simulation
of the Navier–Stokes equations something akin to an explosive instability could be
observed. Before discussing the numerical work, however, let us first outline in slightly
more detail the three articles just cited.

Goldstein & Lee (1992) considered the inviscid, long-wave limit of an adverse
pressure gradient boundary layer taking the pressure gradient as a small parameter.
Mallier & Maslowe (1994), on the other hand, treated resonant interactions in a
hyperbolic tangent mixing layer and Wu (1992) analysed the Stokes layer. The scalings
in all three of these studies were such that the form of the amplitude equation was
dictated by the critical layer and that is why differences in the velocity profile outside
the critical layer turn out to be only of secondary importance.

The basic disturbance in each of these three studies was composed of a plane wave
plus a pair of oblique waves inclined at slightly less than ±60◦ to the mean flow
direction. The frequency of the oblique modes was 1/2 that of the plane wave and
this configuration with the oblique modes inclined at exactly 60◦ would for a triad
of neutral modes satisfy the resonance conditions exactly. (For boundary layers it is
not generally possible to find such a triad of neutral modes, but the approximation is
consistent with the long-wave limit considered in Goldstein & Lee.) This combination
of modes was previously employed in the Blasius context and the reader is referred
to § 17 of the monograph by Craik (1985) for an authoritative review of resonant
interactions in shear flows. The wavenumbers were chosen to correspond with slightly
amplified disturbances in order to yield a so-called non-equilibrium critical layer.
Supposing that the initial amplitudes are infinitesimal, the plane wave on a linear
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basis would have the largest amplification rate. However, this is true only initially
because according to the amplitude equations derived in the forementioned papers
a parametric resonance stage follows during which the amplification of the oblique
waves is more rapid than exponential, whereas the plane wave continues to amplify
at the rate predicted by linear theory until its amplitude is exceeded by that of the
oblique waves. The rapid amplification of the oblique waves feeds back to the plane
wave and the end result is a fully coupled system enhancing the growth rates of all
the interacting modes. We have described this evolution in some detail because it will
be seen that our numerical simulations follow quite closely this scenario. It should be
noted that a similar analysis of the Blasius case by Mankbadi, Wu & Lee (1993) led to
a different result, namely, that an oscillatory saturation stage followed the parametric
resonance stage for the oblique waves.

Experiments on the transition of adverse pressure gradient boundary layers are few
in number compared with the Blasius case. An extensive survey, primarily of research
on flat-plate boundary layers, can be found in the review article by Kachanov (1994).
A major contribution of the experimentalists was to underline the importance of
three-dimensional effects once the initial stage of Tollmien–Schlichting instability is
completed. The next stage includes spanwise-periodic longitudinal vortices and it was
shown by Benney & Lin (1960) how these could be modelled by superimposing a
pair of oblique waves on the primary plane wave disturbance. The details of exactly
how this should be done was and still is a subject of some controversy.

In the Blasius boundary layer experiments, it was found that there are at least two
distinct routes to turbulence. The so-called K-type of breakdown was investigated
earlier than that characterized by subharmonic resonance. A significant difference be-
tween the two types of transition is that the oblique wave frequencies and wavenumber
in the flow direction do not differ greatly from that of the plane wave in the K-type of
interaction. Our simulations, however, concentrate on (but are not restricted to) the
subharmonic instability mechanism because of its potential, as described above, for
explosive instability. It was shown in the experiments of Saric & Thomas (1984) that
for Blasius flow the forcing amplitude of the plane wave determined which scenario
occurred. The initial amplitude of the plane wave leading to K-type breakdown was
approximately double that in the subharmonic case, so it would seem that the latter
is more characteristic of natural transition.

A first attempt to experimentally observe behaviour resembling the explosive insta-
bilities predicted by the amplitude equations discussed above was reported recently
by Corke & Gruber (1996). The velocity profiles in these experiments were well ap-
proximated by the Falkner–Skan similarity solutions of the boundary layer equations
for flow over a wedge. The initial amplitudes, frequencies and obliqueness angles were
all carefully controlled and the pressure gradients were relatively weak, corresponding
to values of the Hartree parameter in the range −0.06 > βH > −0.09 (the separation
value is βH = −0.1988). Although it could not be said that the instabilities were
‘explosive’, the transition process was none the less observed to differ from the Blasius
case in some significant respects. For example, the region of nonlinear amplitude
saturation immediately preceding transition was much shorter.

Our simulations will be seen in § 3 to agree well with the data reported by Corke &
Gruber, the only noticeable difference being that we obtain slightly larger growth rates
in the nonlinear régime. The primary motivation for our work, however, was to follow
the evolution of resonantly interacting disturbances without being limited to small
amplitudes and weak pressure gradients. That being the case the simulations at larger
pressure gradients in § 3.2 should be of most interest. We find a substantial increase
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in the amplification rates once the pressure gradient is stronger than βH = −0.10.
The paper concludes in § 4 with a discussion of this and other results and suggests
possible extensions of the research. First, however, we present the numerical methods
employed in these computations and comparisons with linear theory that were used
to validate the code.

2. Formulation and code validation
The Navier–Stokes equations are solved in this study using a vorticity–velocity for-

mulation for the disturbance flow. The vorticity transport equations are coupled with
an incompressibility constraint. The main appeal of the vorticity–velocity formulation
is that the pressure variable is eliminated while the first-order continuity equation
is replaced by additional second-order equations that are given below. The corre-
sponding Stokes problem consists solely of seemingly independent, positive-definite
equations for the vorticity and the velocity. However, this formulation requires that the
boundary conditions for the vorticity equation be coupled with the solution for veloc-
ity. In numerical implementations based on this formulation, all boundary conditions
are Dirichlet conditions so that the condition number for the system of equations is
smaller than one with other types of boundary conditions. An accurate formulation
of boundary conditions can then be achieved in a numerically compact way. Another
attractive feature of the vorticity–velocity formulation is that the governing equations
can be discretized on a non-staggered grid, thus allowing easy implementation. A
more detailed discussion of the numerical scheme can be found in the thesis of the
first author (Liu 1997).

Consider the flow past a semi-infinite flat surface which is inclined at an angle
βHπ/2 to the incoming stream. Negative values of βH correspond to positive angles
of attack and, therefore, to a free-stream velocity

U∗e (x
∗) = U∗ox

βH/(2−βH ) (2.1)

on the upper surface, where x is non-dimensional and x∗ is dimensional; U∗o is the
free-stream velocity at the inflow boundary. The base flow, which develops under
the adverse pressure gradient corresponding to equation (2.1), is represented by the
velocity field U = (U,V , 0), where U and V are velocity components in the x- and
y-direction, respectively, and the vorticity field Ω = (0, 0, Ω), where Ω is vorticity in
the z-direction. For the disturbance flow, the velocity field is denoted by u = (u, v, w)
and the vorticity field is ω = (ωx, ωy, ωz). Then the vorticity–velocity equations for
the disturbance flow are

∂ω

∂t
= ∇× (u× ω +U × ω + u×Ω) +

1

R∗o
∇2ω, (2.2)

−∇2u = ∇× ω. (2.3)

The above equations are non-dimensionalized with respect to the free-stream velocity
U∗o and displacement thickness δ∗o at the inflow station, and the kinematic viscosity ν.
The Reynolds number in (2.2) is then defined by R∗o = U∗oδ∗o/ν.

At large Reynolds numbers, the base flow on a flat plate with pressure gradient
can be accurately described by solutions of the boundary-layer equations. Although a
marching algorithm may be used to solve the equations for the base flow, the widely
used Falkner–Skan similarity profile is applicable when the free-stream velocity is
of the form (2.1) and is employed for the present study. The profiles with different
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Figure 1. Mean velocity profiles; • indicates the point of inflection.

pressure gradients are shown in figure 1, where inflection points are indicated and η
is a similarity variable defined as

η = y∗
(

U∗e
(2− βH )νx∗

)1/2

.

The governing equations are solved in an integration domain extending in the x-
direction from x = x0 to x = xN , where x0 is the inflow boundary.

2.1. Numerical scheme

The integration domain in the y-direction extends from y = 0 to some large value of
y, say y = y∞, and typically covers several boundary layer thicknesses. In the spanwise
direction, the flow is assumed to be periodic with the domain extending from z = 0
to z = λz , because from boundary layer experiments it has been observed that a
distinct periodic structure is evident in the spanwise direction. The buffer domain
is appended to the end of the integration domain, thus providing a non-reflection
outflow boundary treatment.

By exploiting the spanwise periodicity, a function can be written as a Fourier series
expansion in the spanwise direction with wavenumber γz . (We will not study the final
stage of breakdown into turbulence.) Furthermore, by selecting a set of (ûon,k(y), ω̂o

n,k(y))
properly, one can assume that u, v and ωz are even functions expanded as cosine series,
whereas w,ωx and ωy are odd functions expanded as sine series:

{u, v, ωz}(x, y, z, t) =

Nz∑
k=0

{ûk, v̂k, ω̂zk}(x, y, t) cos(kγzz), (2.4)

{w,ωx, ωy}(x, y, z, t) =

Nz∑
k=0

{ŵk, ω̂xk, ω̂yk}(x, y, t) sin(kγzz). (2.5)

Substituting (2.4) and (2.5) into (2.2) and (2.3) leads to a system of six equations for
the kth harmonic in the (x, y) domain. The equations for the vorticity components
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are

∂ω̂xk

∂t
=
∂P̂k

∂y
+ γzkR̂k +

1

R∗o
(∇2

xy − γ2
z k

2)ω̂xk, (2.6)

∂ω̂yk

∂t
= −γzkQ̂k − ∂P̂k

∂x
+

1

R∗o
(∇2

xy − γ2
z k

2)ω̂yk, (2.7)

∂ω̂zk

∂t
=
∂R̂k

∂x
− ∂Q̂k

∂y
+

1

R∗o
(∇2

xy − γ2
z k

2)ω̂zk, (2.8)

where P̂k , Q̂k and R̂k are the coefficients of the cosine series or sine series of the
quantities P , Q and R, which have the definitions

P = uωy − vωx +Uωy − Vωx,
Q = vωz − wωy + Vωz + vΩ,

and R = wωx − uωz −Uωz − uΩ.

The velocity components are related to the vorticity by

−∇2
xyûk + γ2

z k
2ûk =

∂ω̂zk

∂y
− γzkω̂yk, (2.9)

−∂
2v̂k

∂y2
+ γ2

z k
2v̂k = γzkω̂xk +

∂2ûk

∂x∂y
, (2.10)

−∂
2ŵk

∂y2
+ γ2

z k
2ŵk = −∂ω̂xk

∂y
+ γzk

∂ûk

∂x
. (2.11)

When starting the three-dimensional simulation, all disturbance variables ûk, v̂k, ŵk ,
ω̂xk, ω̂yk, and ω̂zk are set to zero at t = 0. Then, for t > 0, the disturbances are
introduced into the boundary layer at the inflow boundary. The disturbance forcing
consists of a linear combination of eigenfunctions that are solutions of the Orr–
Sommerfeld and Squire equations and it takes the form

(uo,ωo) =
∑
n

Nz∑
k=−Nz

Aon,kRe[(ûon,k(y), ω̂o
n,k(y)) exp(i(kγzz − nft))],

where Aon,k are prescribed two- and three-dimensional disturbance amplitudes and f
is a non-dimensional, real imposed disturbance frequency equal to f∗δ∗o/Ue(xo). The
terms ûon,k(y) are complex eigenfunctions normalized with respect to the maximum
streamwise velocity component.

For the boundary condition at the wall, no-slip conditions are used for the velocity
and the vorticity is computed from the most updated velocity. At the free-stream
boundary, both the perturbation velocity and vorticity vanish exponentially, whereas
the steady profile is that of a Falkner–Skan boundary layer. At the outflow boundary,
the buffer domain technique (Joslin, Streett & Chang 1992) was used to prevent
convective wave reflection or upstream propagation. Within this buffer domain, which
has a length of approximately three wavelengths, the behaviour of the equations is
parabolic rather than elliptic and it is added to the computational domain of interest.
An attenuation function in this buffer region gradually reduces the streamwise viscous
terms to zero and the boundary layer equations essentially apply at the outflow station.

A fractional step method is used in the time advancement. The nonlinear term
and diffusion terms in the x- and y-directions are advanced by using a third-order
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three-stage Runge–Kutta (RK) method (Williamson 1980). Implicit second-order
Crank–Nicolson differencing is used for the normal diffusion term. This time-splitting
procedure leads to the disturbance equations

ω̂
†
xk − ω̂i−1

xk

hit
= aiHi

xk(û, ω̂), (2.12)

ω̂
†
yk − ω̂i−1

yk

hit
= aiHi

yk(û, ω̂), (2.13)

ω̂
†
zk − ω̂i−1

zk

hit
= aiHi

zk(û, ω̂), (2.14)

and

ω̂i
xk − ω̂†xk
hit

=
1

2R∗o

∂2

∂y2
(ω̂†xk + ω̂i

xk), (2.15)

ω̂i
yk − ω̂†yk
hit

=
1

2R∗o

∂2

∂y2
(ω̂†yk + ω̂i

yk), (2.16)

ω̂i
zk − ω̂†zk
hit

=
1

2R∗o

∂2

∂y2
(ω̂†zk + ω̂i

zk), (2.17)

where  Hxk

Hyk

Hzk

i

=

 Lxk
Lyk
Lzk

i−1

+ bi

 Hxk

Hyk

Hzk

i−1

,

and

Lxk =
∂P̂k

∂y
+ γzkR̂k +

(
∂2

∂x2
− γ2

z k
2

)
ω̂xk,

Lyk = −γzkQ̂k − ∂P̂k

∂x
+

(
∂2

∂x2
− γ2

z k
2

)
ω̂yk,

Lzk =
∂R̂k

∂x
− ∂Q̂k

∂y
+

(
∂2

∂x2
− γ2

z k
2

)
ω̂zk.

The quantity ω̂† represents disturbance vorticities at the intermediate RK stages, ω̂i−1

represents vorticities at previous RK stages (i = 1, 2, 3), ω̂0 represents vorticities at
the previous time step, and ai,bi and hit are the RK coefficients and time steps, i.e. a1 b1

a2 b2

a3 b3

 =

 1 0
9/4 −5/9

32/15 −153/128

 and

 h1
t

h2
t

h3
t

 =

 1/3ht
5/12ht
1/4ht

 ,

where the sum of the three RK time stages equals the full time step ht.
The solution procedure is as follows: the intermediate RK vorticities ω̂† are deter-

mined by solving (2.12), (2.13) and (2.14) without imposing any boundary conditions
for vorticities, whereas the boundary conditions at the wall and far field are needed
for obtaining ω̂i. Finally, velocities are obtained from (2.9), (2.10) and (2.11) with their
boundary conditions. Upon solving the above system three consecutive times, full
time step vorticities and velocities are determined. The main computer time consump-
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Figure 2. Comparison of the numerical results with linear theory for βH = −0.09, F = 96 and
α = 0.2757 − i 0.0244: (a) amplification curves; (b) amplitude distribution (normalized by umax) u,
and v.

tion is in solving the Helmholtz equations for the velocity components and vorticity
components.

Spectral element methods are high-order weighted-residual techniques for partial
differential equations that combine the geometric flexibility of finite element tech-
niques with the rapid convergence rate of spectral schemes (Korczak & Patera 1986;
Mavriplis 1989). In the spectral element discretization, the computational domain is
broken up into elements, and the dependent and independent variables are approxi-
mated by Nth-order tensor-product element-based polynomial expansions. Both the
variational principle and Gaussian numerical quadrature are used to form the discrete
equations of the velocity components and vorticity components. The preconditioned
conjugate gradient method was used to avoid forming matrices of the discrete equa-
tions and improve the convergence rate. This leads to a significant reduction in the
computational demands.

2.2. Code validation

The code validation was done by comparing the numerical results with results from
linear stability theory and many examples can be found in Liu (1997). We show here
only one such comparison, a calculation performed for a Falkner–Skan boundary
layer with βH = −0.09. In the streamwise direction, the computational domain, which
consists of three to four wavelengths, extends from x0, where the Reynolds number is
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Reδ∗(x0) = 1012, to xN , where the Reynolds number is Reδ∗(xN) = 1329. In the (x, y)-
plane, the computational domain with the buffer domain is subdivided into 8× 5× 5
elements. In each element (Nx + 1) × (Ny + 1) = 9 × 9 of Legendre–Gauss–Lobatto
points are used. As a result, the total number of points is 13161. The base flow
was disturbed by a two-dimensional wave with frequency parameter F = 96, where
F = (f/R∗o) × 106 and R∗o is the inflow Reynolds number defined earlier. Figure 2
shows the comparison of amplification curves and the amplification distribution for
u and v. The independent variable is y = yδ∗(x0)/δ

∗(x). For the sake of clarity the
distributions of 2v instead of v were plotted. The agreement with linear theory is seen
to be very good. In figure 2(a), the amplification rate is slightly higher than that of
linear theory, but that is expected owing to non-parallel effects. The Reynolds number
is increasing in the downstream direction and the perturbation is consequently moving
into a region of larger amplification rate. These effects are, of course, included in the
DNS, but not in the linear Orr–Sommerfeld stability theory. What is essential is that
the initial slopes of the two curves in figure 2(a) agree.

3. Numerical results
Detailed measurements in adverse pressure gradient boundary layers are available

only for small pressure gradients and this section begins by comparing some of
these data with our numerical simulations. In the experiments of Corke & Gruber,
the oblique waves were always forced at an inclination of ±60◦ to the mean flow.
We consider in § 3.1 the slightly smaller angles for which the subharmonic resonance
conditions are satisfied, but we also investigate the effect of varying this angle. Then, in
§ 3.2 larger pressure gradient cases are examined in some detail; for βH = −0.18 results
are compared for triads satisfying the subharmonic resonance condition with those
corresponding to a Benney–Lin triad. Intermediate values of βH are also considered
and the maximum disturbance amplitudes are determined as a function of pressure
gradient. Finally, in § 3.3, perturbations consisting of an oblique wave pair with no
plane wave present initially are considered.

3.1. Comparison with experiment

The data presented in Corke & Gruber (1996) were for two values of the Hartree
parameter, namely, βH = −0.06 and βH = −0.09. In our simulations, the choice of
dimensionless frequency F = 96 for the basic plane wave disturbance was made to
coincide with the experimental value. The oblique subharmonics and plane wave were
all introduced at the inflow station; the oblique waves have a frequency F = 48
and are periodic in the spanwise direction. The initial Reynolds numbers based on
displacement thickness were 987 and 1012, respectively, large enough to be in the
linearly unstable range and the wavenumber in the flow direction was chosen to
be the most amplified according to linear theory. The wavenumber in the spanwise
direction was obtained by finding solutions of the Orr–Sommerfeld equation such
that the resonance conditions were satisfied. In the present context, this means
that the phase speeds of the plane and oblique waves are identical. The spanwise
wavenumbers satisfying the latter condition turn out to be 0.1665 and 0.1758 in the
cases of βH = −0.06 and βH = −0.09, respectively. As the disturbances propagate
downstream, there will be some detuning owing to boundary layer growth and finite-
amplitude effects, but this detuning seems to be small within the domain studied.

The resulting angle of inclination to the basic flow direction for subharmonic
resonance is between 51◦ and 52◦. This is somewhat less than the asymptotic value of
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60◦ used in the analysis of Goldstein & Lee (1992) and in the experiment by Corke &
Gruber. It will be seen below that this small difference noticeably affects the results.
The inflow amplitudes of the fundamental and subharmonic wave are 0.41% and
0.36% for the case βH = −0.06 and 0.27% and 0.12% for the case βH = −0.09. To
be consistent with ideas related to Squire’s theorem, we have set the initial amplitude
of the subharmonic wave to be slightly smaller than that of the fundamental wave.

The fundamental (two-dimensional) and subharmonic (three-dimensional) distur-
bance components are denoted as modes (nt, nz) and the corresponding amplitudes are
Anz,nt , where nt stands for the frequency as a multiple of the subharmonic frequency
and nz denotes a multiple of the spanwise wavenumber. For example, the two-
dimensional fundamental wave is denoted as mode (2,0) and the three-dimensional
subharmonic wave is denoted as mode (1,1). For comparison with each mode of the
experiments, the numerical results are Fourier analysed in time for every x, y and z
location.

Results of the calculations for the case βH = −0.06 are shown in figure 3. The
value of α given in the figure caption is that of the plane wave; the corresponding
value of αr for the oblique waves in all subharmonic interaction cases was 1/2 that of
the plane wave. The results presented here are from a Fourier analysis of the eighth
time period after the disturbance was initiated at the inflow boundary. Figure 3(a)
shows the streamwise growth of maximum u-fluctuations. Amplitudes of both the
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fundamental and subharmonic modes in the computations have been normalized by
A2,0(x0). Generally, agreement with the experiments is quite good. Before discussing
these comparisons, however, it is interesting to note the behaviour of the plane wave
in the simulations when the oblique waves are absent. This is shown in the lowest
curve of figure 3(a) where it can be seen that nonlinear saturation occurs before there
is very much amplification. Itoh (1974) has carried out a Stuart–Landau analysis for
the Blasius boundary layer that predicts finite-amplitude equilibration in accordance
with our computations suggesting that his conclusions are qualitatively valid even for
small pressure gradients.

The other curves describe the resonantly interacting modes and are the ones of
primary interest. It is particularly noteworthy that the oblique subharmonics, contrary
to Squire’s theorem, are the most amplified almost from the beginning. For Reynolds
numbers less than 1250, a sort of parametric resonance occurs in which the plane
wave’s evolution is hardly affected by the presence of the oblique modes; this is true
even when the amplitude of the oblique waves is double that of the plane wave,
as predicted by the amplitude equations discussed in § 1. The oblique waves, on the
other hand, amplify at a much greater rate than would be the case if the plane wave
were absent. At higher Reynolds numbers, the modes interact strongly and the rapid
amplification of the oblique waves feeds back to the plane wave and enhances its
growth rate. The amplitude ratio of the subharmonic mode to the fundamental mode
at the most downstream position in the computation is 2.72 compared with a ratio
of 2.9 in the experiment.

The mean flow generated by the interaction of the oblique waves, i.e. the (0,2)
mode, turns out to be less significant in the triad interaction than when the plane
wave is absent. It has been omitted from figure 3(b) for reasons of clarity, but it
would be nearly coincident with the curve labelled two-dimensional only and slightly
below it.

Amplitude distributions with respect to y of the numerical results and experiments
are compared in figure 3(b) for Reδ∗ = 1233. To demonstrate the quantitative difference
between the subharmonic and fundamental mode, the curves were normalized by the
u2,0 maximum of experimental measurements. Except for some deviation close to the
maxima, the agreement between simulation and experiment for both modes is very
good.

Similar comparisons for βH = −0.09 have also been made. Figure 4(a) compares
the maximum u-fluctuations predicted by computation with the experimental mea-
surements of Corke & Gruber. For this case, the quantitative agreement is again quite
good between the experimental data and numerical results for the growth rates of the
fundamental and subharmonic modes. The amplitude ratio at the most downstream
position is 1.46 by computation and 1.3 in the measurements. Note that in the Blasius
flow experiments of Corke & Mangano (1989) the amplitude ratio was found to be
about 5, so this quantity decreases rapidly with increasing pressure gradient and it
will be seen below that the trend continues as βH becomes more negative.

Figure 4(b) compares the u-component amplitude variation as a function of height.
It has been observed experimentally that for moderate adverse pressure gradients a
double peak in this quantity occurs. The double peak is evident in figure 12(b) of
Corke & Gruber with βH = −0.09 and in figure 1 with βH = −0.18 in Hest, Passchier
& Henkes (1996). The same feature appears in our computations as can be seen in
figure 4(b). Although the computed amplitude evolution, as illustrated in both figures
3(a) and 4(a), follows quite closely the measurements of Corke & Gruber, it can be
seen that at the more downstream stations the computed growth rates are noticeably
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greater. This is true for both the plane wave and the subharmonics. It turns out that
the discrepancy can be explained by taking into account the angle of inclination of
the oblique subharmonics. In the case of Blasius flow, Zelman & Maslennikova (1993)
using weakly nonlinear methods were able to predict with some degree of success the
obliqueness angle that would give rise to the largest growth rate.

We have carried out a similar investigation, but based on the full equations, for
the mean flow with βH = −0.09. In these simulations, the oblique waves no longer
satisfy the resonance conditions so we do not use Orr–Sommerfeld modes for them at
the inflow boundary. Instead, we employ the procedure of Fasel, Rist & Konzelmann
(1990) to simulate disturbances introduced by localized blowing and suction within a
narrow strip x1 6 x 6 x2. For this, the normal velocity component is chosen as

v̂k(x, 0, t) = Aon,k sin(αrk(x− x1)) sin(fnt), x1 6 x 6 x2,

v̂k(x, 0, t) = 0, x0 6 x < x1 and x2 < x 6 xN,

where Aon,k , fn and αrk are real constants that can be chosen to adjust the initial
amplitude, the frequency and wavenumber of disturbances. The width of the suction
strip, x2 − x1, for these calculations is two wavelengths of the fundamental mode or
one wavelength of the subharmonic mode. The location of x1 is approximately one
fundamental wavelength downstream of the inflow boundary.

In figure 5, we show the dependence of subharmonic growth rate on obliqueness an-
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gle. The two curves demonstrate that the outcome depends on the initial amplitude of
the plane wave. For the lower curve, the initial amplitude of the plane wave was set to
be A2,0 = 0.27% and four cases were run; the lowest ratio of the spanwise wavenum-
ber to streamwise wavenumber was 1 and the largest was 1.732. The subharmonic
growth rate, denoted σ in figure 5, is analogous to the quantity A−1dA/dx defined
in (3.5) of Zelman & Maslennikova. The use of a locally linearized quantity is less
appropriate in the more nonlinear computations depicted here, but it is convenient for
presentation as it facilitates comparison with figure 6(b) of Zelman & Maslennikova
dealing with the Blasius boundary layer. However, the true amplification rate is faster
than exponential, so σ increases with x.

For the smaller amplitude case, it can be seen that the largest amplification
rate occurs when the input obliqueness angle is close to the 51◦ value predicted by
resonant interaction theory. However, when the initial amplitude of A2,0 is increased to
0.7%, then the largest growth rate is obtained when the oblique modes are inclined at
approximately 60◦. This result is not necessarily inconsistent with resonant interaction
theory; rather, it indicates that higher-order terms need to be taken into account when
the initial amplitude of the plane wave is larger. The latter situation is a favourable
one for secondary instability approaches, such as those reviewed by Herbert (1988)
and, possibly, they offer an easier alternative to predicting the obliqueness angle
giving the largest initial growth rate. The controversial Squire modes (see discussion
in § 26.1 of Craik 1985 and § 3.4 of Zelman & Maslennikova) might also play a role,
but it seemed unlikely to us that these linearly damped modes would be of primary
importance, so we have done no calculations in which they were included.

The trends illustrated in figure 5 are similar to those for the Blasius boundary
layer treated in Zelman & Maslennikova, as indicated above. These authors have also
obtained some results for the case βH = −0.10 and they found, in contrast with the
flat-plate and favourable pressure gradient cases, that the dependence of growth rate
on obliqueness angle varies with Reynolds number. This suggests that the optimal
obliqueness angle may vary with a number of parameters and the question deserves
a more detailed investigation.

In the experimental data in figures 3(a) and 4(a), the oblique waves were forced at
60◦ in order to coincide with the long-wave limit treated by Goldstein & Lee (1992).
Initially, we just assumed that this accounts for the difference in growth rates when
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compared with the simulations done at 51◦. However, at the suggestion of a referee,
we repeated these computations employing oblique waves inclined at 60◦ and the
new results are shown in figure 6. The agreement with the experiments is remarkable,
especially when taking into account that it is not possible to simulate exactly a
Falkner–Skan flow experimentally. A ‘virtual leading edge’ must be employed so
there is some uncertainty as to the equivalent Reynolds number. Perhaps the excellent
agreement means that the stability properties are not particularly sensitive to the
Reynolds number. In any case, these results suggest that forcing the oblique waves
at 51◦ in the experiments would have produced even larger amplification rates than
those observed.

When the initial amplitudes are small, figure 5 shows that the largest growth rates
occur when the resonance conditions are satisfied exactly. We have computed the
spatial growth for the 45◦ case, i.e. the first point on the lower curve in figure 5. For
reasons of clarity, we did not show this curve in figure 6; however, for Reδ∗ > 1300 it
lies below that for the 60◦ case.

3.2. Stronger pressure gradients

Figure 7 illustrates the evolution of the disturbance amplitudes in a case with a
stronger pressure gradient, namely, βH = −0.12. A significant increase in the amplifi-
cation rate was observed at this value of βH . Owing to the rapid amplification of both
primary and subharmonic disturbances, the logarithm of the amplitudes is plotted
rather than the amplitudes themselves. This is the first case where the amplification is
great enough to warrant a comparison with the predictions of the evolution equations
discussed in § 1. However, it is clear that the singular behaviour exhibited in figure 2,
for example, of Goldstein & Lee (1992) does not occur in the numerical simulation.
We must conclude, therefore, that the theory breaks down shortly after the fully
coupled stage is reached.

We do not know of any experiments that would be able to confirm or contradict
the relatively sudden increase in amplification rate observed in our simulations when
the pressure gradient becomes stronger than βH ≈ −0.10. It is likely that experiments
have been done at the pressure gradients of interest here, but such results do not
seem to have been published in sources accessible to us and so we are unable to make
comparisons. Linear theory, incidentally, cannot account for the above mentioned
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rapid variation with pressure gradient. Figure 12 of Obremski, Morkovin & Landahl
(1969) shows the increase of the maximum value of −αi as −βH increases and the
variation is gradual, so nonlinear effects must be responsible for our results.

Some numerical simulations, however, were reported for the case βH = −0.18 by
Kloker & Fasel (1990). These authors found that a larger growth rate was obtained
for the oblique waves than in the subharmonic case when the oblique waves had the
same frequency as the plane wave (this is termed ‘fundamental breakdown’ in their
report). We were rather skeptical about this conclusion because the triad resonance
conditions are not satisfied in the fundamental configuration. Our own simulations
did in fact support the results of Kloker & Fasel to the extent that larger growth
rates were obtained than anticipated. However, as shown in figure 8 for βH = −0.15
and in figure 9 for βH = −0.18, although the plane wave saturation amplitudes
are comparable, the oblique waves attain significantly larger amplitudes when the
subharmonic resonance conditions are satisfied.

Two possible explanations for the discrepancy come to mind. The first is compu-
tatational: the outflow boundary conditions employed in Kloker & Fasel appear to
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be quasilinear and assume spatial periodicity which would be less accurate than the
use of a buffer domain. It was, in fact, reported by Fasel et al. (1990, p. 34) that these
conditions led to numerical difficulties in cases with large amplification. Also, they
used only two modes in the spanwise coordinate, whereas we used five. A second
possibility is differences in initial conditions because Kloker & Fasel chose the initial
amplitude of the oblique waves to be double that of the fundamental. (We have since
discussed this with Professor Fasel and the input conditions actually used were the
reverse of what is stated in the paper.) Irrespective of these differences, it is interesting
that the fundamental disturbance configuration does lead to sizeable amplification in
the case βH = −0.18 and there is a tentative suggestion that both types of resonance
were present in experiments reported by Hest et al. at the same value of βH .

Some theoretical support and a possible explanation can be found in a recent
article by Mallier (1995) on Benney–Lin triads in mixing layers. Mallier has derived
amplitude equations with finite-time singularities governing interactions where the
plane wave is larger in order of magnitude than the oblique waves. Even though his
calculations are for a tanh y mixing layer, the conclusions may be applicable to the
near-separation boundary layer because of the inflectional velocity profile present in
both cases.

In figure 10, the maximum amplitudes are shown as a function of the Falkner–
Skan parameter βH . The frequency parameters for the plane and oblique modes
were F = 96 and F = 48 in all cases. As noted above, a dramatic increase in
amplification rate occurs at βH = −0.12 and this translates into a correspondingly
large maximum amplitude. This trend continues with increasing pressure gradient; in
fact, the disturbances were still growing when the computation was terminated in the
case βH = −0.18 illustrated in figure 9. No doubt, the flow would break down into
turbulence at this point. Unfortunately, the resolution in our numerical scheme is not
adequate to resolve the small scales that arise in the final stage of breakdown.

3.3. Oblique wave disturbance pairs

A perturbation composed of a pair of oblique waves can amplify significantly even
in the absence of a plane wave. The instability mechanism involves a resonance with
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the mean flow and its strength is enhanced by the stronger critical point singularity
that occurs in the inviscid limit compared with a single plane wave mode. Benney
(1961) showed that in the nearly-neutral case this resonance can produce a secondary
flow whose u-component velocity grows like t2, while the mean longitudinal vorticity
component grows linearly in t. Some spatial simulations for the Blasius boundary
layer were reported by Joslin, Streett & Chang (1993) who found that the outcome
depended on the initial amplitudes. Only for relatively large initial amplitudes did
the disturbance amplify sufficiently for the authors to state that breakdown was
indicated. Similar computations by Berlin, Lundbladh & Henningson (1994) led to
different conclusions. These authors have simulated bypass transition with initial
oblique wave perturbations of comparable amplitude to those employed by Joslin et
al. and attribute the different outcome to a variation in the initial input concerning
the normal vorticity. However, our communications with these authors indicate that
the discrepancy is due in part to different criteria being employed to define ‘transition’.

Although the differing conclusions in these articles seem deserving of further
investigation in the Blasius case, our own results suggest that the oblique wave pair
instability is not competitive with the subharmonic triad when there is a pressure
gradient. We have made several runs at the two values of the Falkner–Skan parameter
βH = −0.06 and −0.15. Our results are similar to those of Joslin et al. in that there
is a strong dependence on initial amplitude. Figure 11(a) illustrates the oblique wave
amplification in the case βH = −0.06 which is seen to be unimpressive. It is more
interesting to observe that the streamwise vortex component, which is absent initially,
grows in accordance with the predictions of Benney (1961) and soon becomes larger
than the oblique waves. A plane wave is also generated immediately by weak nonlinear
interaction of the oblique waves, but its amplitude remains smaller.

Figures corresponding to other cases involving oblique wave pairs can be found in
the thesis of the first author (Liu 1997), but here we provide only a brief description.
For initial amplitudes smaller than the simulation in figure 11 there is virtually no
amplification of the oblique waves, but the (0,2) vortex component still shows some
growth. At the stronger pressure gradient βH = −0.15, all modes grow to an amplitude
that is substantial, but none the less is only about 20% of the maximum amplitudes
reached in the subharmonic triad interaction. Moreover, the subharmonic triad does
not require special initial amplitudes to yield rapid disturbance growth, so we believe
that it is more pertinent to natural transition.
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4. Concluding remarks
In the preceding section, DNS simulations were presented for several interacting

wave configurations and we considered values of the pressure gradient parameter
ranging from almost flat-plate conditions to near separation. Although our investiga-
tion is the most comprehensive to date in this respect, it is clear that much remains
to be done owing to the large number of parameters that can be varied in the
problem. For the most part, we concentrated on initially small disturbances because
we were interested in natural transition and we employed subharmonic resonant triad
perturbations because these led to the largest growth rates.

Possibly our most surprising finding was that there is a substantial increase in
nonlinear amplification rate occurring somewhere in the range −0.12 6 βH 6 −0.09.
The character of transition seems to change abruptly as the pressure gradient increases
near those values of the Hartree parameter. The experiments of Corke & Gruber
(1996) failed to exhibit the explosive instability predicted in the theoretical work
discussed in § 1, but the results presented herein suggest that an extension of those
experiments to slightly larger pressure gradients might lead to instabilities that could
be so-characterized in that very large growth rates occur.

One question that is raised by our computations is why the amplification rates
increase so dramatically with pressure gradient? Although none of the theoretical
work discussed in § 1 is directly applicable in the parameter range of most interest
here, there are indications that critical layer dynamics dominate much of the transition
process. On p. 168 of the monograph by Craik (1985), the factors contributing to
large coefficients of the nonlinear terms in the amplitude equations governing weakly
nonlinear resonant interactions are discussed. Distance of the critical layer from the
wall is one of those factors and, as is clear from figure 1 of this paper, the critical layer
(which is not far from the inflection point in the velocity profile) moves away from
the wall rapidly with increasing pressure gradient. Even though Craik’s asymptotic
analysis is not valid in the parameter régime where most of our computations
were performed, it is still to be expected that the wall has a damping influence on
instabilities originating in the critical layer. If that is the case, then an increased
distance of the critical layer from the wall and shorter-wavelength disturbances will
be associated with larger growth rates. The importance of the wavelength is clear
from the Blasius flow interaction coefficients computed by Hendricks, the results of
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which are given in the appendix to Usher & Craik (1975). Increasing α from 0.1 to
0.5 radically changed the relative values of the coefficients of the nonlinear terms in
the amplitude equations, with the larger wavenumber indicating rapid amplification
of the oblique subharmonics.

A number of viewpoints besides that of resonant triads have been proposed as
candidates for assessing transition in Blasius boundary layers and other shear flows.
We have said little about these, but a few words about the closely related topic of
secondary instability are appropriate in the light of our results. A review of different
formulations of resonant interaction theory, as well as the parametric approach to
secondary instability theory, can be found in a paper by Nayfeh (1987), whereas the
survey article by Herbert (1988) deals primarily with secondary instability. Although
secondary instability theories are subject to the limitations of any linear theory,
they are believed capable of predicting quantities such as observed wavenumbers of
secondary bifurcations. In order to do this, it is necessary that the primary instability
first attain a quasi-equilibrium state; experiments on Blasius boundary layers, as well
as mixing layers, indicate that assumption to be a reasonable one. Our simulations
presented in this article, however, demonstrate that such behaviour is not to be
expected for moderate presure gradients. In the case of a small adverse pressure
gradient, a Floquet-type of analysis should provide reliable results for a certain
distance. But even for βH = −0.06, figure 3(a) indicates that the evolution of the plane
and oblique modes becomes coupled and once there is feedback from the subharmonic
to the primary disturbance, the latter resumes its amplification. The non-equilibrium
critical layer formulation of Goldstein & Lee (1992) does incorporate the effects
of coupling and at least for small pressure gradients provides a picture consistent
with our results for some distance beyond the parametric stage and extending into
the nonlinear régime. However, the behaviour near the singularity of the nonlinear
amplitude equations suggests that the plane wave blows up more rapidly than the
oblique waves and that is not consistent with our results.

Some comments on the computational aspects of this investigation should also be
added. The simulations presented here were done on a workstation and represented
the maximum load that could be handled on such a machine. Spatial simulations
are much more demanding than those utilizing a temporal approach. However, we
believe that for the present problem a spatial formulation is necessary for a number
of reasons. One is that the dispersive properties of spatial and temporal modes are
not the same. Because we are concerned with resonant interactions, it is important
to maintain the same relationship between propagation speeds and wavelengths as in
the real world. A consequence, however, of doing spatial simulations is the need for
a reliable outflow boundary condition. The use of a buffer domain greatly increases
the computing requirements, but was found necessary to obtain satisfactory results.
The formulation of more efficient outflow conditions is a subject of ongoing research
and progress anticipated in this area will greatly facilitate computational stability
investigations extending the present effort.

To summarize our conclusions, of the numerous factors influencing the evolution
of resonantly interacting waves in a boundary layer, the results presented in § 3 show
that the outcome is particularly sensitive to the streamwise pressure gradient. This
is not surprising if we recall that even on a linear basis two different instability
mechanisms can be involved and which one is dominant depends primarily on the
pressure gradient. In the Blasius limit of zero pressure gradient, the viscous Tollmien–
Schlichting mechanism is responsible for instability. However, at moderate values of
the (adverse) pressure gradient a quite different, essentially inviscid, mechanism is
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responsible for the instability and viscosity can be stabilizing; the latter mechanism
is a consequence of a vorticity maximum in the velocity profile and is discussed in
§ 4.4 of Lin (1955). The initial amplitudes of plane and oblique modes, as well as their
ratio, no doubt are also important, and other types of disturbances may be present
in experiments with forcing. Clearly, transition in shear flows involves a number of
possible scenarios and we do not put the emphasis on any ‘universal’ feature; rather,
it is the differences between each case that makes the subject so fascinating.

We are greatly indebted to Professor Thomas Corke for discussions of his exper-
imental work, his encouragement and even for helpful suggestions about numerical
aspects. We have also benefited from stimulating discussions with Dr Marvin Gold-
stein and we thank him for his continued interest. This research was supported by
the Natural Sciences and Engineering Research Council of Canada.
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